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Multi-target PLD for growing oxide heterostructures

Motivation

Single-stepped SrTiO3

`

Excimer
Laser
(KrF)

CTO

BTO STO

@ 700 oC
10 mTorr O2
Rep. rate = 
10 ~ 20 Hz

Number of laser shots for 1 u.c. 
at 720 oC in 0.4 (10) mTorr O2

#2 = ~19  
#3 = ~43 (54)
#4 = ~148 (190)

#1

#2
#3

#4

7.7 mm2

0.38 mm2

Laser spots on target

0 100 200 300

R
H

E
E

D
 in

te
ns

ity
 (a

. u
.)

Time (s)

#2
(5 Hz)

#3
(5 Hz)

#4
(5 Hz)

#5
(10 Hz)

• Modulation of composition on the near-atomic scale.

• Control of elastic and electrostatic interactions via ionic size and 
valence (Sai et al., PRL 84, 5636 (2000)). 

• Design a locally asymmetric thermodynamic potential 
• Anomalous FE properties (strong self-poling, enhanced 

piezoelectricity, etc.)

Compositionally-broken inversion 
symmetry : Tri-color superlattice (TCS)

BaTiO3 (a = 0.399 nm, c = 0.404 nm)

SrTiO3 (a = 0.391 nm)

CaTiO3 (a = 0.384 nm)

misfit: 2.1%

1.7%

3.9%

Keys to success
• Near-lattice-matched layers
• Thermodynamically stable electrode layers
• Atomically flat substrate surface (single-stepped)
• Controlled growth of single unit-cell units – flat surfaces and 

abrupt interfaces

~0.4 nm in height

Annealing 
at 1000~1200 oC

NH4F-HF (BOE) : H2O 
= 1:10 ( pH ≈ 4.5)

As-purchased SrTiO3
substrates

• Rough surface.
• Chemically non-uniform

(acidic TiO2 and basic SrO
coexist at the surface). 

Approach:
dissolve SrO and recrystallize surface

image size: 3 × 3  µm2

• Atomically flat terraces have been obtained with widths from 50 nm to 1 µm
• Parameters depend on substrate miscut angle

RHEED <100>
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Preparing atomically flat substrates

Growth of particle-free, single-
stepped conducting SrRuO3 films

Nanoscale control of artificial heterostructures

Summary
Atomically flat single-stepped SrTiO3 substrates have been 
successfully prepared by a chemical treatment followed by a 
thermal annealing at 1100~1200 oC.

Thermodynamically and chemically stable, single-stepped 
conducting SrRuO3 layers with an atomically flat interface with 
the SrTiO3 substrates were grown for electrical 
characterization.

A-site isovalent artificial tri-color superlattices using CaTiO3, 
SrTiO3, and BaTiO3 have been synthesized under precisely 
controlled growth conditions (especially at high oxygen 
pressure, 10 mTorr) on single-stepped SrTiO3 substrates covered 
with SrRuO3 bottom electrodes.

RHEED, AFM, and XRD investigations reveal nearly perfect 
superlattices, even up to 1 µm in thickness. 

Artificial mutilayers give unprecedented freedom for materials 
design. 

Artificial mutilayers are attractive for developing new materials 
and exploring new physical phenomena.
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Controlled surfaces at each step:
(BTO)1/(STO)3/(CTO)3 on SrRuO3/SrTiO3(001)

~200 nm thick

Different growth behavior of each layer: 
[(BTO)2/(STO)2/(CTO)2]76 on SRO/STO(001) 

~480 nm

~1000 nm
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end of growth <100>

end of growth <110>

The ultimate control: 
thousands of layers, (BTO)1/(STO)1/(CTO)1

Fully strained superlattices
ex: [(BTO)2/(STO)2/(CTO)2]76/SRO/STO(001)

An example of materials-by-design:
Developing fractional-layer superlattices (FLS)

SrTiO3 substrate SrTiO3 (0.4 u.c.)/SrRuO3 (5 u.c.) SrRuO3 (3 u.c.)

STEP 1:
Prepare single-stepped substrate

STEP 2: Grow islands with 1 u.c. height
by interrupting the layer-by-layer growth

STEP 3: Cover with 2D layers that 
have step-flow growth

SrTiO3

SrRuO3

SrTiO3

SrRuO3

SrTiO3

AFM topography with single steps 
from a ~180 nm-thick film.

Cross sectional Z-STEM
(B/C/S = 3/3/3)

LEED

RHEED oscillations and AFM image 
demonstrating the ability to grow 
atomically-flat superlattices with 
complete reproducibility for thousands 
of unit cells. Pronounced RHEED 
oscillations and single-steps on the 
surface were clearly observed from a 
one-micron-thick TCS.

• Synthesis of new functional materials that do 
not exist in nature.

• Discovery of new physical phenomena at the 
nanoscale in complex materials.

• Artificially layered heterostructures: Ideal 
materials for exploring the unprecedented 
nature of man-made materials.

• Utilizing the freedom of materials design for 
manipulating the resulting properties.

A-site modulation                                                B-site modulation

Importance: Grow high quality 
conducting films that serve as 
buffer layer for epitaxial growth 
and as bottom electrode for 
electrical characterization of 
subsequent oxide films.

Our single-stepped SrRuO3 electrode layer with a particle-free surface perfectly transfers 
the high crystallinity to the subsequent layer and remains stable even after air exposure 
(e.g., both ex-situ RHEED and LEED show no chemical contamination).

Optimization 

• Precise control of the growth mode in perovskites enables us to form perovskite-type islands (unit-cell height, sub-micron diameter) onto    
a layer of a dissimilar material, and subsequently to embed these islands into an atomically flat matrix layer of the first or a third material 

- SrTiO3 islands are formed by interrupting the growth before making a flat surface (step 2) during the layer-by-layer growth, and 2D 
layers of SrRuO3 then cover the SrTiO3 islands by the step-flow growth (step 3).

• The periodic stacking of such embedded-island layers (so called FLS) will allow us to investigate, manipulate, and utilize interlayer coupling 
effects in “designer materials”.

badly treated / poor quality SrTiO3

LEED by S. Kalinin (CMSD, ORNL)

Surface of the SrTiO3 (001) substrate

Surface 
of the 
grown 
SrRuO3
layer

1 u.c.

θ -2θ scan

• (top) Diffraction peaks in an XRD θ-2θ
scan confirm the quality and 
periodicity of a superlattice.

• (right) Reciprocal space map of the 
114 reflection shows no evidence of 
relaxation of the film and reconfirms 
the superlattice peaks.

RSM of the 114 reflection

*: W-Lα
: Cu-Kβ
: Pt top electrodes

Effect of the dwell time during switching targets on RHEED oscillations 

RHEED 
oscillations 
are more 
pronounced 
with longer 
dwell time.

[(BTO)1/(STO)1/(CTO)1]165
on STO(001)

Z-STEM of 
[(BTO)i/(STO)j/(CTO)k]n

Growth conditions

-O2 pressure = 10 mTorr
-Sub. temp. = 720 oC
-Laser rep. rate = 5 Hz
-Laser fluence = 2 J/cm2

SrRuO3


