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Modeling for Integrating Science and Management

virginia h. dale and keith l. kline

1. Introduction

The stakeholders involved in management of land and carbon (C) are diverse. Farmers
and foresters are concerned with plants and management practices that are most
likely to sustain profits. The opportunity to sell C sequestration credits adds a new
dimension to production strategies. Land managers may be asking questions, such
as how tillage and fertilizer practices in a specific location affect C storage and
crop yields. Regional planners and governing bodies may have the opportunity to
influence where and how cultivation occurs and interacts with other land uses and
industries. They may ask questions related to how crops can be distributed across a
landscape to achieve multiple goals that reflect local priorities (water quality, scenic
views, traditional lifestyles, tax revenues, etc.). At state and national levels, there
are requirements to manage human activities to comply with land, water, and air-
emission regulations as well as policy objectives such as job creation and energy
security. Decision makers at these levels may desire guidance on how the interactions
of policy options provide incentives or disincentives for certain land-use practices and
resulting environmental and socioeconomic impacts. Many decision makers are most
interested in how scientific information can be used to guide land-use practices in the
near term, typically one to five years. However, the scientific information may derive
from data measured at entirely different scales or locations and in time spans that
range from decades to centuries. With rising attention to global markets and climate
change, managers are concerned about how changes in their region are affected by
global processes. National and regional decision makers want to know how their
choices affect productivity, incomes, C and nutrient cycles, and other development
goals. There needs to be a better match between the diverse needs of managers and
the information provided by scientific analysis and models.

Models are an important tool in scientific investigations. Britain’s Science Council
defines science to be “the pursuit of knowledge and understanding of the natural and
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210 Modeling for Integrating Science and Management

social world following a systematic methodology based on evidence.”1 Systems for
observing, documenting, and analyzing results are organized under many different
disciplines, which share the common thread of being built around observation and
measurement. Careful monitoring and measurement leads to new discoveries, new and
revised hypotheses, tests of those hypotheses, and, hence, better science. Disciplined
measurements that use accepted protocols have much more than a supporting role
for science – they form its very foundation. However, for many practical, financial,
logistic, and physical reasons, not everything can be observed and measured. For
example, some changes occur over decades, centuries, or millennia, and others occur
on very large areas, but most measurements record short-term changes in a relatively
small area. Support for long-term or large-scale monitoring is scanty and difficult to
obtain. Furthermore, the causes and effects of complex relationships are often difficult
to discern and change over time, making research results dependent on the temporal
and spatial scales of analysis. Therefore, models that are properly designed and used
can play a valuable role in elucidating long-term, large-scale, or complex processes.
Models are a tool that can be used to explore scientific hypotheses. Ray Orbach likened
science to a three-legged stool, the legs of which are theory, experiment, and modeling
and simulation (personal communication). All three legs depend on foundations of
data.

This chapter describes ways to use models as a bridge between scientific under-
standing of land-use practices and C flux and the needs of decision makers regarding
management of land and C. To do so, we explore the modeling process and types of
models that are used for land and C. That topic sets the context for a discussion of the
advantages of using models to increase understanding of decision makers about land
and C processes as well as cautionary principles. The next section reveals how sci-
entists can best communicate modeling results to decision makers and what decision
makers should ask of models. This analysis leads to some recommended practices
and a conclusion about the next steps that should be taken to foster improved inte-
gration between science and management via models. Because of the diversity of
stakeholders involved in these issues, the audience for this chapter is quite broad.
Chapter 7 discusses how C is a part of land-use models, and several chapters review
and analyze how information related to land use and the C cycle are monitored and
measured.

2. The Modeling Process

Modeling is a process that enhances understanding of a system by requiring a formal
statement of what is known and not known (Van Winkle and Dale 1998). Modeling is
often called an art as there are diverse approaches to capture observed relationships

1 http://www.sciencecouncil.org/ (accessed July 29, 2012).
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using mathematics, and it takes experience, expertise, and creativity to appropriately
express complex interactions in what are necessarily simplified constructs. The mod-
eling process requires formulating a hypothesis concerning relationships among com-
ponents of a system and fosters exploration of the implications of the hypothesis. Thus
modeling has an important role in the iterative process of hypothesis formulation and
testing (Overton 1977). It influences experimental design, monitoring approaches,
and interpretation of results (Van Winkle and Dale 1998).

Models can identify gaps and inconsistencies in knowledge. Aber and Driscoll
(1997, p. 647) claim that “models are often more interesting when they fail than
when they succeed” because there is more potential for learning when model results
are not consistent with empirical observations or current understanding than when
results are consistent (e.g., see Lee 1973; Ackerman et al. 1974; Morgan and Henrion
1990; Hall 2000; Meadows, Randers, and Meadows 2004). Inconsistencies inspire
scientists to look for other theories and to investigate whether exceptions are occurring.
Inconsistency between model output and data can reveal nonstationary processes in the
system or poor data quality (Pontius and Petrova 2010; Pontius and Li 2010) even when
the model simulates the mechanics accurately. On the other hand, such inconsistency
could indicate that a model’s underlying assumptions are wrong, the conceptual theory
requires revision, key processes are excluded, or combinations of all of the above.
If the model instigates in-depth query, then the modeling process has succeeded in
fostering enhanced learning. Much can be learned about misunderstandings of system
processes responsible for unanticipated outcomes. Initial conclusions from modeling
often instigate changes to the original hypothesis or the model itself and thus influence
the next step in the scientific investigation.

Models are abstractions meant to represent key elements and interactions of a
system so that relationships can be analyzed within established boundaries. Model
results are the logical extensions of existing data and are produced via a process
that assimilates and applies current understanding. However, models can also mislead
and have been used to reinforce common beliefs until a preponderance of evidence
supports a better model and eventually overcomes the inertia of long-held assumptions
(Box 1979). Box 8.1 describes problems that arise when underlying model theory is
not in agreement with empirical data.

Modeling may be used to simulate specific conditions as represented by scenarios
of land-use and C cycles in a particular context. Model results can be analyzed to
explore potential effects of processes, interactions, or decisions. Models provide a tool
for managers to enhance their understanding of the complexities and unique features
of a given situation as well as the potential response(s) to management actions or
other changes. They also provide a means to project effects under various scenarios
and to evaluate possible future outcomes of decisions. Models should be used to
test and improve understanding of underlying relationships. However, as the context
for modeling expands in spatial and temporal extent, the complexity and uncertainty
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of both the model and observations increase, making it difficult to test theorized
relationships with data.

The modeling process is important to improve knowledge about land use and C.
Changes in land cover affect C storage and sequestration processes, but the interac-
tions among changes in C, land cover, land use, management, and long-term storage
capacity and productivity are less clear. This disconnect occurs, in part, because scien-
tific knowledge about how to manage for long-term C storage capacity remains limited
and, in part, because C has not been a significant goal for managing land. Changes
in land use, management, cover, and other land and soil attributes can all affect C
storage and fluxes (see Chapters 2 and 3). Although there are detailed, mechanistic
models of C flux at the cellular and plant levels, models linking C and land changes
at plot scales typically do not incorporate the major driving forces and feedbacks
operative at larger scales of land change (Verburg et al. 2004). Another problem in
discerning the effects of changes in land and C is selecting the location and temporal
and spatial scale of analysis. Land cover and land management are in constant flux,
and changes are the product of several major drivers at different scales. The influ-
ences of cultural, technological, biophysical, political, economic, and demographic
factors on land use are complex, poorly understood, and variable over space and time
(Lambin, Geist, and Lepers 2003). There is a great need to sort out the conditions
under which certain drivers influence land change and the impact of those interactions
(Center for BioEnergy Sustainability [CBES] 2009). No one model represents all of
these forces; each approach includes just some of the factors influencing land-use
changes.

The ability of a model to integrate scientific understanding in such a way that
decision making can be improved depends on the state of the science and data avail-
ability, management needs, and conveyance of scientific understanding to managers.
The state of the science can range from an explicit, detailed understanding of the
key processes with a narrow range of confidence around parameter values to gen-
eral ideas to be tested, refuted, or incrementally revised with large or unknowable
confidence intervals around key variables. Unfortunately, the state of the science sup-
porting the modeling of land use and C cycles varies widely over ecosystems and
scales and is often much closer to the “general idea” end of the knowledge spectrum.
Although land-use change has been assumed to be a major contributor to greenhouse
gas (GHG) emissions (World Resources Institute [WRI] 2009), this assumption and
the estimated values associated with it are increasingly questioned (Le Quéré et al.
2009), and land use remains the greatest source of uncertainty in global emission
assessments (National Research Council [NRC] 2010) because of the cumulative
uncertainty in the types and rates of land-use change, rates of regrowth, and fates of
the C involved (Dale and King 1996). Thus modeling should be viewed as part of an
iterative process for enhancing scientific understanding, pinpointing needs for better
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data, and generating better models of land management and C flux to support the
decision-making process.

2.1. Key Components of the Modeling Process

The development of a model and the documentation that describes the model and its
use should reflect at least nine components. The information that each component
requires is summarized in Table 8.1 and described next.

The purpose of the model – what processes it was specifically developed to simulate
and why – should be clearly articulated. Who developed the model, for what sponsors,
and what was the hypothesis that the model was meant to elucidate? The purpose
should include a description of the scope of applications that the model was designed
to represent.

The application context of the model has implications for, sets requirements on,
and places limitations on the model and its results. The context includes the phe-
nomenon being modeled, the hypothesis under investigation, the values and interests
of the stakeholders, the availability of data, the availability of human and economic
resources, the temporal and spatial constraints, the ecological condition of the land-
scape and its topology, the historic dynamics and rates of change in land cover and
its topology, and the needs of the decision makers. Having a conceptual framework
for the model as applied to each situation will help to set the context and identify the
boundaries to the problem space.

Model assumptions depend largely on the model purpose and structure but derive
partly from the context. Model results should be interpreted carefully and within the
context of the assumptions on which the model is based. These assumed conditions
define the time frame and spatial boundaries of concern, processes being modeled, the
validity of parameter values, boundary conditions, the completeness and validity of
the theory underlying the model, and feedbacks to be included. It is also important to
consider what processes and conditions are not included. Because these assumptions
are typically specific to each situation, caution must be used in applying a model
developed for one circumstance to another case. Model assumptions should accurately
reflect and reveal the relationships between drivers and effects in the models and the
degree to which these relations are based on empirical evidence. For example, some
public policies related to the estimated land-use change effects of bioenergy have
relied on economic modeling assumptions that lack empirical support (Kline et al.
2011; Kim and Dale 2011).

Inputs include all data and metadata (data about data) needed to run the model.
These data include values of variables, variable names, initial conditions, current rates
of change, spatial and temporal boundary values, process-specifying control data,
data-format information, data tags, and file names and formats.
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Table 8.1. Key components of model documentation

Component Description of Information That Needs to Be Provided

Purpose � Hypothesis
� Process or phenomenon being simulated
� Applicability

Application context � Conceptual framework for the model as applied to a specific case
� Variables and processes considered exogenous
� Reference-case specifications

Assumptions � Temporal and spatial extent of applicability
� Spatial and temporal resolution of each data set and submodel
� Process included and not included and how specified (giving

citations for underlying theory or observations)
� Feedbacks included and not included and how specified
� Scenarios used
� Questions being asked

Inputs � All initial conditions and their units
� How the initial-condition data were obtained and their sources
� Variability in input data

Outputs � Variables simulated and their units
� How the simulations can be used

Calibration � Iterative process used to determine the set of parameter values
that produces the most appropriate model outcomes given the
available information

� Data used for calibration

Validation � Process used to determine the soundness of the conceptual
framework

� Accuracy of the model outcomes
� Methods for judging accuracy
� Data used for validation

Sensitivity analysis � How variation in particular parameters affects model outcomes
� Method used to identify the influence on model outcomes of

variability in parameter values
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Component Description of Information That Needs to Be Provided

Uncertainty analysis � Assumptions for which there is a lack of knowledge and for
which the facts are not obtainable

� Risk of uncertain input data and assumptions
� Method used to ascertain the uncertainty in model parameters

(e.g., errors in experimental design, lack of key measurements,
poor understanding of underlying processes, and presence
of confounding factors)

� Human actions owing to free will

Outputs include all data and metadata produced by the model, such as dependent-
variable values, variable names, format specifications, format types (tables, graphs,
etc.), and format specifications. If one model’s output is further processed or manipu-
lated based on another model or factors generated by a submodel, these steps should
be clearly identified as well.

Calibration is the process of determining the set of parameter values that produces
the most appropriate model outcomes given the available information. The calibration
methods and their reliability and precision should be specified.

Validation is the process of determining the soundness and accuracy of the model
outcomes. Validation must be performed in a separate step from calibration and use
independent data sets. The validation methods and their reliability and precision
should be specified. Models need to be validated by comparing projections to current
observational data or historical conditions. However, such a comparison is not always
done and may be infeasible in some cases. This is the case with many of the models
of land changes. Too often they are not validated or even compared to empirical
observations (Kline and Dale 2009). See Pontius et al. (2008) for examples of useful
validations. Without proper validation, a model’s projections are merely the result
of assumptions and initial conditions and should be considered with caution and
appropriate skepticism.

Sensitivity analysis of models is a method to identify the influence on model
outcomes of variability in the values of specific parameters. Such an analysis typically
runs iterations of the model with different values of one input variable so that the
variability of the results indicates the sensitivity of the model to that variable.

Uncertainty analysis consists of determining what information is omitted, poorly
known, or unknowable and how this absence could affect modeling results. The
strength and validity of a theory to describe a given phenomenon may be a source of
uncertainty (however, Box 8.1 describes a situation in which an invalid underlying
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theory led to repeated efforts to increase precision and reduce uncertainties within the
model rather than revise the underlying theory). Some uncertainties are irreducible,
and some may not be bounded by probability, but these can be critical for under-
standing total uncertainty (Tannert, Elvers, and Jandrig 2007). Uncertainty analysis
complements sensitivity analysis by helping a user identify the limits of the model’s
applicability.

Box 8.1
An Example of Problems That Arise When Underlying Model Theory Is

Not in Agreement with Empirical Data and Their Implications

The Copernican Revolution in astronomy provides an example of how setting forth the
underlying theory of mathematical models is essential to documenting how models are
used to explain observations. In 1543, Copernicus published a mathematical model
explaining the theory of a heliocentric planetary system, which displaced the Earth from
the center of the universe. However, it was not until 1822 that the model was formally
accepted by decision makers in the Catholic Church and much of the general public. In
the intervening centuries, earlier mathematical models were repeatedly adjusted so that
they could better explain the observed phenomena without changing the assumption that
Earth was at the center of the solar system. In particular, the Ptolemaic (or geocentric)
system was repeatedly revised to explain observed movements of the planets. The
adjustment of the Ptolemaic model was necessary to support a simple and fundamental
conceptual belief – reinforced by apparent observation each day – that the sun circled
around the Earth. Meanwhile, scientists such as Kepler contributed further analysis, and
Galileo conducted telescopic studies that supported the heliocentic theory and the model
of Copernicus. It took a preponderance of evidence and a great deal of time for leaders
deeply invested in the geocentric model to accept change.

A similar situation may be occurring as general economic models are applied to
support the belief that U.S. ethanol policy causes an increase in global deforestation. The
models estimating these indirect land-use changes do not include many of the key
underlying social, cultural, political, and ecological processes known to drive
deforestation. This is not surprising considering that global economic models were
developed for entirely different purposes. Empirical evidence from the first decade of
ethanol growth in the United States (2000 to 2010) provided little support for the
assumptions and land-use change results produced by the models (Oladosu et al. 2011).
Adjustments to the models could make marginal improvements; however, if a model
does not incorporate appropriate theory, it is unlikely to adequately explain the observed
patterns. Alignment or discrepancy will become more apparent as more accurate
observations are accumulated. Regardless, it is not that a model is good or bad (an odd
concept in itself) but rather that a model is unlikely to be appropriate for describing
changes if known drivers for change are omitted. Therefore, it is critical that underlying
theory be set forth as part of the model documentation.
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Examples of processes not included in many land-use change models are reversibility
and repeated use of fire in the historic baseline. The fact that land is typically cleared and
burned to formalize a claim, and reburned repeatedly in the absence of market demand,
is not included in current models. Such land is more likely to rebuild C stocks above- and
belowground when it is brought into productive management, generating an effect from
indirect land-use change that is diametrically opposite of prevailing global equilibrium
model estimates (CBES 2009). Furthermore, if reversion occurs within a short time
frame, there may be no indirect land-use change effect (net emissions from land-use
change would be zero); however, the Environmental Protection Agency’s Renewable
Fuel Standard specifically omits land reversion (see http://www.epa.gov/OMS/
renewablefuels/rfs2-peer-review-emissions.pdf [accessed March 23, 2012]). To improve
validity and accuracy, models used to estimate indirect effects of bioenergy should
adequately incorporate baseline and ongoing land-use changes as a part of their
processes (Kline et al. 2011; Gnansounou et al. 2009; Keeney and Hertel 2009; Kim,
Kim, and Dale 2009).

2.2. Types of Models

There are many types of models, including heuristic, physical, and mathematical
(Dale and O’Neill 1999). Heuristic models are relatively simple but capture key
relationships of the system in a nonquantitative way. They can be depicted as pictures,
diagrams, words, or simple mathematical relationships (such as inequalities) rather
than accurate, absolute measures. Many conceptual models fall into this category
because they provide a simple qualitative and transparent representation of the system
being studied. Such approaches are designed to reveal how a system works.

One example of heuristic models is the conceptual approach that has been applied
in most economic modeling of land-use change associated with bioenergy policies
(Figure 8.1), which begins with two basic land classes: forests and cultivated areas.
By starting with this simple model, the effect of an additional demand for land for
bioenergy crops inevitably leads to displacement and land-use change. The model
does not attempt to ask if land-use change occurs; rather, it presumes that land-use
change occurs and then estimates how much occurs under different scenarios.

An alternative representation of the world would lead to a different modeling
approach. For example, the conceptual model developed to portray how land use
relates to global economic models in Figure 8.2 (CBES 2009) illustrates the following
distinct relationships:

� Initial land-use change is a function of local cultural, technical, biophysical, political, and
demographic process

� Subsequent land-use change – what is planted on previously cleared land – is influenced by
a distinct set of drivers and is more susceptible to global economic forces
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Figure 8.1. A conceptual diagram that is commonly used in economic modeling to
project land-use change (adapted from Dehue, Meyer, and van de Staaij 2010). This
representation assumes that all land is either in forests or responsible cultivation
and has uniform environmental characteristics within a category (such as ability
to sequester or release C). The assumption is that indirect land-use change occurs
when existing plantations are used to produce biomass feedstock (circle A) and cause
expansion of the land use for biomass production to forest or cultivated areas (circles
B or C) if there is insufficient reduction in feedstock demand or increase in yield.
This conceptual model does not recognize the variability in C sequestration and other
environmental variables within each land type or the great availability of previously
cleared and underutilized land (Food and Agriculture Organization of the United
Nations and International Institute for Applied Systems Analysis [FAO and IAASA
2007]).

The figure points out that there is a difference between land use and the land-cover
attributes that are typically used in global economic models. Land use is rarely
measured (Dale et al. 2011). As a result, global economic models used to estimate
land-use change are based on data sets more reflective of land cover than land use.
Furthermore, existing global models typically portray changes in proportions of land
cover and only relate to C flux when particular assumptions of current C content are
made about the places where land-cover changes occur.

Another example of a heuristic model is a narrative that describes changes in land
and C as consequences consistent with the particular scenario depicted (e.g., Richards
1990, Richards and Flint 1994). Such conceptual models are appealing in that they
are relatively easy to understand. However, their simplicity may mean that some of
the important interactions in the system are not fully characterized.

Physical models are simplified abstractions of the real world, typically constructed
in three dimensions. Examples are microcosms, wind tunnels (used to examine aero-
dynamic properties of airplanes, cars, and seeds), trials and test plots, and aquari-
ums (used in studies of fish population dynamics). Physical models of C flux and
land-use change are difficult to construct because of the large spatial and tempo-
ral scales involved. As one example, Biosphere 2 is a 1.2 hectare structure built
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Figure 8.2. Conceptual diagram of the relationships among initial land use, changes
in land cover, data interpretation filters, and global economic models, as well as the
effects of these components on C flux and subsequent drivers of land-use change
[adapted from CBES (2009)].

as a closed ecosystem in Arizona to explore interactions within five biomes and
an agricultural area (Allen, Nelson, and Alling 2003). The facility faced major
engineering challenges but over two years was able to track great fluctuations in
carbon dioxide (CO2) and declines in oxygen. Biosphere 2 dealt with accelerated
rates of biogeochemical cycling and ranges of atmospheric components that occur in
closed systems by developing new approaches for air, water, and wastewater recy-
cling and reuse. Much was learned about managing crops using nonchemical pest
and disease control. The advantage of physical models is that they provide empir-
ical information and directly relate to the human desire for visualization; however,
the Biosphere 2 system is a poor replicate of the Earth. No physical model can
capture the full complexity of the interactions between land and C fluxes at global
scales.

Mathematical models portray relationships via numeric formulas. Equations are
developed to reflect the major processes, interactions, and constraints of the system.
This chapter focuses on how mathematical models of land and C can be used to
both integrate science and inform decision makers. The many types of mathematical
models can be characterized by the approach that is taken to the problem (e.g.,
optimization), the method used to solve the problem (e.g., analytic versus simulation),
or the underlying theory as to which forces are driving change.
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There are several approaches used in mathematical models of land change based
on different modeling methods and drivers of change (Table 8.2). Transition models
assume that the history or scenario is critical to future interactions, whereas agent-
based models assume that particular actors (such as land managers and policy makers)
are most important to future pathways. Economic models explain land changes as
being the result of supply, demand, and relative prices. General equilibrium models
represent the whole economy with several interacting markets that seek equilibrium
after a simulated shock. In contrast, partial-equilibrium models analyze these forces
within a defined subset of the economy. Spatially explicit land-use models account for
the role of location in simulating land changes. Biophysical models assume that the
physical and environmental settings are prime drivers of change and are sometimes
used to project implications of different scenarios (e.g., land management or distur-
bances). Optimization models employ a problem formulation that sets out to derive
conditions under which a specific objective is maximized or minimized given certain
constraints. System dynamic models focus on interactions between components of
the organization. Table 8.2 and its examples are included to make readers aware of the
diversity of approaches and the many models that exist regarding land-use change.

There is often overlap in approaches used to model land changes, typically depend-
ing on the questions being addressed and how the models are used. For example, the
Integrated Model to Assess the Global Environment (IMAGE2) links models within
a societal-environmental-climate framework to simulate the consequences of human
activities worldwide and to assess sustainability issues related to climate change, bio-
diversity, and human well-being. As another example, the Policy Analysis System
(POLYSYS) (Ugarte and Ray 2000) is a modular partial equilibrium economic mod-
eling system of the U.S. agriculture sector in which planning decisions are made at
the Agricultural Statistics District level, and problems about crop demands, livestock
issues, and market prices are solved at the national level relative to baseline projec-
tions estimated by the Food and Agricultural Policy Research Institute (FAPRI), the
U.S. Department of Agriculture, or the Congressional Budget Office.3

2.3. Modeling Multiple Drivers

A major challenge in land-use change modeling is considering the implications of
different drivers of change. Combinations of models are often used to account for
feedbacks and interactions between different sectors. Example model frameworks
developed to link the land-use, economic, and energy sectors include economic-
biophysical models (LEITAP-IMAGE4 and GTAP-KLUM5), general equilibrium

2 http://www.mnp.nl/en/themasites/image/index.html (accessed March 23, 2012).
3 http://www.agpolicy.org/polysys.html (accessed March 23, 2012).
4 http://ec.europa.eu/agriculture/agrista/2006/scenar2020/final report/scenar ch04.pdf (accessed March 23, 2012).
5 https://www.gtap.agecon.purdue.edu/resources/download/3681.pdf (accessed March 23, 2012).
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Table 8.2. Mathematical models and frameworks used for land-use change (derived
and expanded from discussion in Lambin et al. [2003] and Figure 2 in CBES [2009]
was provided by L. Panichelli). There is some overlap in the types of models in the
table because some applications combine several approaches

Paths toward
Type of Model Key Drivers Stability
and Framework of Change That Emerge Examples

Transition model Scenario or history Change probability Mather, Rudel, Moran
and Brondizioa

Agent-based
model

Individual actors,
such as land
managers

Multiphasic rather
than sequential

CASA,b Berndes-
Sparovek, G4M

General-
equilibrium
model

Global economic
pressures

Equilibrium (by
definition)

GTAP, LEITAP, EPPA,
DARTc

Partial-
equilibrium
model

A specific
economic sector
(e.g.,
agricultural
economics)

Equilibrium (by
definition)

AgLink, ESIM, FAPRI,
CAPRI, IMPACT,
PEM, POLES,
PRIMESd

Spatially explicit
land-use
models

Land suitability,
productivity,
and available
infrastructure
and transport
costs

Variable CLUE, KLUM (which
uses the
Lund-Potsdam-Jena
[LPJ] dynamic global
vegetation model),
GLOB, GEOMODe

a Mather and Needle (1998); Mather, Fairbairn, and Needle (1999); Moran and Brondizio
(1998), Moran, Brondizio, and McCracken (2002); Rudel, Perez-Lugo, and Zichal (2000).

b http://unfccc.int/adaptation/nairobi work programme/knowledge resources and
publications/items/5323.php (accessed August 14, 2012).

c GTAP: https://www.gtap.agecon.purdue.edu/databases/v7/; LEITAP: http://www.mnp.nl/
en/themasites/image/model_details/agricultural_economy/Demandforfoodanimalsandcro
psproducts.html; EPPA: pdf://rsb.epfl.ch/files/content/sites/rsb2/files/Biofuels/Regional%2
0Outreaches%20&%20Meetings/LUC%20Workshop%20Sao%20Paulo/background%20
papers/RSB-LUC%20-%20Background%20document.pdf and http://globalchange.mit
.edu/research/IGSM#EPPA; DART: http://www.cesbio.ups-tlse.fr/us/dart/dart public
ations.html (accessed March 21, 2010).

d AgLink: http://ageconsearch.umn.edu/bitstream/14808/1/ospawp08.pdf; ESIM: http://
wwwuser.gwdg.de/∼mbanse/publikationen/dokumentation-esim.pdf; FAPRI: http:
//www.fapri.iastate.edu/models/; CAPRI: http://www.capri-model.org/dokuwiki/doku.
php?id=start; IMPACT: http://www.ifpri.org/book-751/ourwork/program/impact-model;
POLES: http://www.enerdata.fr/enerdatauk/tools/Model POLES.html; PRIMES:
http://www.e3mlab.ntua.gr/manuals/PRIMsd.pdf (accessed March 21, 2012).

e CLUE: http://www.cluemodel.nl/index.htm; KLUM: http://www.fnu.zmaw.de/fileadmin/
fnu-files/publication/working-papers/KLUM LPJ WP.pdf; LPJ: http://www.pik-potsdam
.de/research/projects/lpjweb; GLOB: http://www.globmodel.info/workshop.html (accessed
March 21, 2008); GEOMOD: Hall et al. (1995) and Echeverria et al. (2008).

(continued)
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Table 8.2 (continued)

Paths toward
Type of Model Key Drivers Stability
and Framework of Change That Emerge Examples

Biophysical
models

Biophysical,
site-specific
issues

Variable EPIC, DayCent/Centuryf

Optimization
models

Maximization or
minimization of
an objective
function,
generally
economic profit
or utility

Equilibrium GLOBIOM,
EUFASOM, FASOM,
LUCEA, Panichelli-
Gnansounoug

Systems
dynamics

Organizations,
institutions, and
their
interactions

Dynamic (by
definition)

Sheehan-Greene,
GLUE, Stamboulis-
Papachristos,
TIMERh

f EPIC: http://www.jstor.org/stable/76847; DayCent/Century: http://www.nrel.colostate.
edu/projects/irc/public/Documents/Software/Century5/Reference/html/releasenotesv5.htm
(accessed March 21, 2010).

g GLOBIOM: http://www.iiasa.ac.at/Research/FOR/globiom.html; EUFASOM: http:
//www.fnu.zmaw.de/fileadmin/fnu-files/publication/working-papers/wp156 eufasom.pdf;
FASOM: http://www.fs.fed.us/pnw/pubs/pnw rp495.pdf (accessed March 21, 2010);
LUCEA: Johansson and Azar (2007); Panichelli-Gnansounou: Panichelli and Gnansounou
(2008).

h Sheehan-Greene: http://www.bio.org/letters/CARB LCFS Sheehan 200904.pdf; TIMER:
http://www.rivm.nl/bibliotheek/rapporten/461502024.pdf (accessed March 21, 2010).

and partial equilibrium models (GTAP-FAPRI, GTAP-IMPACT, and GTAP-PEM6),
economic-forestry models (GLOBIOM-G4M7), economic-energy models (LEITAP-
TIMER8), economic-agricultural models (AgLink-SAPIM, IFPSIM-EPIC, and
GTAP-CAPRI-FSSIM), economic–land-use models (GTAP-CLUE), and economic-
environmental models (e.g., GTAP-CA-GREET).

Another tool to address the potential for multiple drivers and effects is through life
cycle assessment (LCA), an approach designed to assess major impacts associated
with all stages of a process from cradle to grave and including social, environmental,

6 http://www.oecd.org/document/6/0,3343,en_2649_33777_36642246_1_1_1_1,00.html (accessed March 23, 2012).
7 http://digital.library.unt.edu/ark:/67531/metadc13707/m2/1/high res d/Gusti IIASA model cluster.pdf (accessed

March 23, 2012).
8 http://www.mnp.nl/en/themasites/image/model details/energy supply demand/index.html (accessed March 23,

2012).



2. The Modeling Process 223

and economic effects (e.g., GREET,9 Ecoinvent,10 and GHGenius11). LCA often
requires the results of many other models as input values. Some call these LCA
approaches spreadsheet models, and their value may be in providing a means to link
a whole set of model outputs into a common framework and to document the many
influencing factors and their effects.

A common simplification underlying many models used to estimate land-use
change is to assume that the change in land cover from one point in time to another
is caused by the land use associated with the secondary observation. Thus if what
was once classified as forest is subsequently classified as a soybean field, a causal
relationship is assumed based on the observed correlation. In reality, the forces that
determine whether land is cleared, how land is cleared, when land is cleared, and what
is planted on the land after it is cleared are most likely to be quite distinct in each case
and highly dependent on many site-specific contextual variables.

2.4. The Role of Data in Modeling Land and Carbon

Accuracy in modeling of land and C processes depends on the underlying data and
relationship assumed to describe these phenomena. Obtaining data is often a challenge.
Independent data for validation are not always available at the time the model is
developed. In that case, any data that are readily available are often used to calibrate
the model, and validation often must await new information. Furthermore, the number
of observations available for validation is often less than the number of parameters.
When only a small amount of data is available, the standard deviation in model
parameters can exceed the variation being modeled, which may compromise the
statistical validity of any simulated values.

Typically and not unexpectedly, there is a lack of fit between the model projections
and the observations. Often the model intent is to portray the theory. Even so, this
discrepancy may stimulate a reevaluation of the model, a reevaluation of the input data
or the questions being asked of the model, or both. Any data set is but one interpretation
of reality, and there are always concerns about the reliability of the data because of
sampling bias, spatial and temporal aspects of the sampling, testing design, and so
forth. Thus models offer one of many possible interpretations of relationships among
variables – just as the sample data provide one perspective. The relation between
model projections and extant data needs to be considered, and if there is no agreement
between observation and model projection in trends, values, or direction, then the
differences must be explained.

9 http://www.transportation.anl.gov/ (accessed March 23, 2012).
10 http://www.ecoinvent.ch/ (accessed March 23, 2012).
11 http://www.ghgenius.ca/ (accessed March 23, 2012).
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Historical data or data collected from an independent location can serve for valida-
tion. When projecting model outcomes to the future, and thus to unknown conditions,
creative ways to validate the model must be devised. Often a model can be initiated
under past conditions and used to project changes up to the present time (e.g., Zeng
et al. 2008). Such hindcasts can then be compared to historical data so that confidence
in modeling past conditions can be extended to projections of the future in a quantita-
tive way (e.g., see Pontius and Neeti 2010). Hindcasting should use historical data from
time periods during which the processes of interest were operative. In other words, a
test of model validity is limited to the prevalent conditions associated with the historic
data. Thus models cannot make “predictions” about a future based on past relation-
ships and processes, when these key variables are changing. Examples of significant
global changes include warming, precipitation regimes, atmospheric concentrations
of CO2, conversion of natural landscapes (such as coastal zones) to human uses, inten-
sification of nutrient cycles, hydrological cycles, disturbance regimes, introduction of
nonnative species into ecosystems, and species loss.

Some data are not appropriate for model validation. For example, two-point com-
parisons can easily misrepresent actual trends and processes. Similarly, small data sets
that happen to capture a rare or extreme event value may bias data in one direction,
whereas discarding the data may lead to an opposite bias. In addition, although models
of ecological succession can be tested by data that contain changes over time in veg-
etation, C, or floristic composition (e.g., Pontius et al. 2008), if regular disturbances
are a part of the system being modeled and yet did not occur at places from which the
data were obtained, then those data would not be useful for model validation. In con-
trast, Doyle (1981) presents a case of using past hurricane disturbance for appropriate
model testing.

A concern specific to modeling land and C issues is the underlying data used to
set initial conditions and values of model parameters. Too often, data are used with-
out considering the bias originating from data inventory and editing, the effects of
data uncertainty on model projections, or the suitability of the data for the applica-
tion. For example, average C stock values generated from protected forest research
sites may not be representative of C stocks on lands being converted to agriculture,
because the latter have often undergone decades of timber extraction and other minor
disturbances leading up to their use for agriculture. Similarly, data for land cover
are sometimes employed when land use is being modeled. This chapter focuses
on information underlying land use because Chapter 7 discusses C in land-use
models.

A major challenge for modeling land use is the paucity of reliable data at appropriate
temporal and spatial scales. There is only limited information about how land is used
or managed. Any given class of land cover or land use could have wide-ranging C
storage, flux, and potentials. Indeed, variation within a land-cover or land-use class
may exceed that between classes. In addition, variations in forest growth rates or



2. The Modeling Process 225

density can alter conclusions about the GHG emission effects of changes in forest
area (Rautiainen et al. 2011).

Remote sensing data from satellites, although illustrative of many changes in
the landscape, do not typically provide the detail necessary to estimate above- or
belowground C storage or flux and other key attributes, such as what land is best
suited for production and what intensity of production the land can support (CBES
2009; see Chapter 5). Satellite imagery is limited to observed land cover during recent
decades, and even then, differing sensors and data classification systems make change
analysis challenging. Remote sensing is capable of generating data with high spatial
and temporal resolution, although the raw imagery alone does not reveal how the land
is managed or why changes in cover occur. Many changes in land use and management
are not measurable from land-cover data, which may lead to a misinterpretation of
change and effects.

Some scientists use census or survey data to supplement land cover, but that infor-
mation often deviates widely among countries because of variations in definitions of
land-use classes and inventory techniques (Grainger 2010). Nevertheless, if properly
collected and reported, census data can provide a valuable source of information on
land management that is highly relevant to C flux and assessment. Currently, the
variability in crops and global land-management practices cannot be accurately mod-
eled or documented, partly because no global data sets are available that consistently
measure changes in well-defined vegetation categories at regular intervals (Grainger
2008), much less changes in above- and belowground C stocks over time.

The categorization of land types can influence model interpretation. Even the
definition of forest can cause confusion (Colson et al. 2009). Huge variations in
C stores and sequestration capacity can occur over time within a single land-cover
category such as forest or pasture (Rautiainen et al. 2011). Simple definitions of
land-cover categories usually ignore these dynamics and merely assign average
values for attributes to each category and then assume an abrupt and complete change
at an arbitrary point of class differentiation (e.g., when forest canopy falls from
10 percent to 9 percent of the measured area, the land-cover changes from that of
average “forest” to that of average “pasture”). In this case, changes in land-cover
classification are often inappropriately substituted for changes in “land use.” Using
these definitional shortcuts to characterize how changes in land use affect C may
not have much relationship to real-world processes that govern C sequestration and
storage. Significant variations in the C attributes that depend on the history of land-use
practices and the variance of C within land-cover types are typically not a part of the
analysis.

Another example is marginal land, which is generally defined as land that is not
generating profits under a given set of conditions. Marginal and degraded land that
was previously cleared but is not actively cultivated represents a large and poorly
characterized resource that can be categorized in several ways. Specific attention
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should be paid to historic trends and fluxes of C and nutrients because these dynam-
ics are poorly understood and yet form a critical component of any assessment
of potential land uses and C storage. Over the past two decades, an average of
3.8 million square kilometers of land (an area larger than India) was burned each year
(Giglio et al. 2010), and most of the fires occurred on marginal lands in sub-Saharan
Africa and agricultural frontiers in other developing nations. These lands clearly have
great potential to sequester or release C, depending on management practices. In
particular, characterizing the extent, location, and factors leading to land underuti-
lization is necessary to design policies that can guide decisions about desired direc-
tions (e.g., to reduce total GHG emissions and to improve rural economies) (CBES
2009).

Consistent and precise information about C stocks, nitrogen stocks, and land-use-
and land-cover–specific fluxes of C and nitrogen are not available at the global scale.
Standard data sets are needed for validation or verification of model results from
back-casting or other approaches; however, adequate validation of global models may
not be feasible in the near term because of data limitations. The global land-change
modeling community requires spatially explicit land-use data updated on a yearly or
seasonal basis with special attention to marginal lands and connecting, where possible,
the land-use management data available from local agencies to observed land-cover
information (Ramankutty et al. 2008) along with corresponding biogeochemical fluxes
associated with these uses and cover types.

3. Using Models in Making Decisions about Land and Carbon Cycling

Models can be valuable tools for increasing understanding about interactions between
land use and the C cycle, or they can foster misconceptions. Overreliance on models
can have consequences ranging from misinformation that undercuts efficient assess-
ment of water quality (e.g., the Chesapeake Bay; Shivers and Moglen 2008) to finan-
cial calamity (discussed later). Hall (1988) points out that decision makers sometimes
accept model results without considering how they relate to the real world. Models
offer several advantages for guiding decisions in land-use and C management, but
they should be employed with a certain amount of caution.

3.1. Advantages of Using Models to Increase the Understanding
of Decision Makers

Quantitative models, when run in a deterministic mode, are repeatable. They are able
to integrate known information from several different sources and disciplines and thus
can address the broad constraints, conditions, and opportunities with which decision
makers are presented. Often, decision makers have to address issues that require
attention at different temporal and spatial scales. Some models focus on processes
that occur on the order of seconds to minutes (e.g., how land use can affect air quality),
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whereas others consider changes on the timescale of decades, centuries, or millennia
(e.g., return interval of fires, droughts, or climate change).

Models that help to explain the dynamics behind changes over years to decades
are most in demand by decision makers dealing with land and C issues because they
match political time horizons and because many of these effects are not apparent for
many decades or even centuries. In any case, the timescale of a model needs to relate
to the timescale of the management questions and their implications. Furthermore,
the specific management issue targeted by a modeling project focuses the spatial scale
of the question and points to the type of model to be used as well. Although some
management issues deal with decisions on small scales for homogeneously managed
land, it is often necessary to consider a parcel within a larger context because past
management of the parcel along with past, present, and future activities on adjacent
lands may have influences (White et al. 1997) and because natural and political
boundaries also come into play.

Models can help to organize and track information, ideas, and the outcomes of
decision-making experiments in a way that would not be possible otherwise. The act
of writing an equation explicitly defines relations and formalizes the hypothesis being
explored. Mathematical models are useful to explore relationships in cases where field
or laboratory data are limited, incomplete, or not directly applicable to the decision
being made. In those cases, results from mathematical models can provide a perspec-
tive on alternative choices. Even when extensive data are available, the complexity
of a situation may require a model for interpreting interactions or expanding results
to larger spatial scales or longer timescales. The absence of adequate data does not
imply that there is no scientific value in developing models of land use or C flux. The
collaborative process of scientists developing a simulation model can be worthwhile,
because it requires synthesis of data, theories, and opinions over scales of space, time,
and biological organization. It often results in questions appropriate for new exper-
imental studies, particularly when models do not meet expectations (Aber 1997).
Furthermore, it can help to focus efforts on priorities for data collection and analysis.

The advantages of model experiments and scenario analysis may be particularly
useful to decision makers and other stakeholders designing steps to use market and
financial incentives to reduce the emissions of GHGs from deforestation and forest
degradation (REDD). REDD objectives often include conservation, biodiversity, and
alleviation of poverty. Modeling of land use is needed (1) to identify and assess the
practices that would have occurred without a REDD Project intervention (the “busi-
ness as usual” scenario) and (2) to compare the effects of that scenario with what
would happen under alternative policies designed to reduce GHG emissions (Brown
et al. 2007). REDD-related research efforts have revealed some of the different drivers
of land-use change around the world (e.g., in Panama: Dale et al. 2003; Indone-
sia: Butler, Koh, and Ghazou 2009; Uganda: Nakakaawa, Vedeld, and Aune 2011).
REDD activities have typically been undertaken by national or local governments with
support from external partners such as Norway, the United Nations, and the World
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Bank. However, it is the people living in an area where REDD activities occur who are
most affected, because their livelihoods typically depend on the forest. Hence, model-
ing land-use change with respect to C fluxes and REDD is likely to be more useful if
it incorporates an understanding of local social, cultural, and political conditions and
aspirations. Properly designed models, along with participatory approaches, monitor-
ing, and other tools, could help to guide investment decisions that benefit indigenous
people and conserve natural resources while providing a point of reference for a polit-
ical process dealing with the causes and effects of deforestation (Corbera, Estrada,
and Brown 2010).

3.2. Cautionary Principles in Using Models for Decision Making

Great caution is required in interpreting model projections, and decisions should
not be based solely on model results because model projections are representations
of a selected set of observations of the real world based on the existing scientific
understanding of the system (Dale and Van Winkle 1998). Effectively used, calibrated,
and validated, these results can provide information regarding what could happen, not
necessarily what will occur in the real world.

Model results always have uncertainties because they are based on simplifications
of processes and their interactions. That is why model results are called projections
(estimates of future possibilities) rather than predictions (something that is declared
in advance) (Dale and Van Winkle 1998). Even so, decision makers and the public
typically do not recognize the great uncertainties in land-use changes as sources of
GHG emissions (estimates of the annual flux of CO2 released through forest clearing
are uncertain by plus or minus 200 percent according to the NRC [2010]). Decision
makers need to understand how models fit within the process of scientific investigation.
Developing scientific knowledge is an iterative process that builds from observations
to formulate hypotheses that can then be tested with empirical information or, in
an interim period when data are lacking, with models. Additional data collection,
research, and analyses lead to new understandings and new hypotheses, which, in
turn, are often further revised in the future. Thus models do not present “truths” but
only an interpretation of the underlying assumptions and scenarios being explored at
a given point in time.

Model results are often presented to decision makers as possible implications of
a certain set of assumptions that characterize a future scenario. Frequently, several
scenarios and their implications are presented as a way to capture a range of future
possibilities (e.g., Intergovernmental Panel on Climate Change [IPCC] 2000). In such
cases, scenario analysis is used to explore alternative futures. Because the future is
unknown, it is important to consider several scenarios and to base at least one scenario
on “business as usual.” Although changes occur in all situations, an extrapolation of
recent trends can be used as a point of reference in many situations. An example of
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this approach occurred in the Brazilian state of Rondônia (Dale et al. 1994), where a
model was developed to identify the effects of farmers’ decisions on C sequestration.
The model assessed the ability of those farmers to remain on the land and found that
the business as usual (slash, burn, cultivate, deplete the soil, and move on) scenario
was more similar to the “unsustainable” scenario than to “sustainable” scenarios that
involved the use of multiple perennial crops and no burning. These model results
helped to support the government’s plan to establish farmers who used multiple
perennial crops and did not burn as a way to show other farmers how to manage land
for persistent productivity and to enhance C sequestration. Such scenario exploration
informs policy makers about which aspects of the systems they should be most
concerned.

Current understandings of complex systems, as reflected in models, are rarely
adequate to provide answers to decision makers’ questions. There is no simple theory
to describe all the complexities in land-use processes (Veldkamp et al. 2001, CBES
2009). The sophistication of numerical models and accompanying sensitivity analysis
and “error bars” can lead to a false sense of confidence and may inhibit people from
questioning the applicability or accuracy of results. Often it is necessary to move ahead
in the decision-making process with incomplete information (Wiens 1996). Models
may be able to provide some insights; however, they cannot provide predictions about
particular outcomes when new forces are at play. In such cases, models can be used
to inform decision makers about potential issues and outcomes, but it is critical that
the limitations of models and their projections be made clear.

Although this book focuses on the topic of land use and the C cycle, the role of
models in the 2008 global financial collapse provides some lessons regarding the use
of models for integrating science and decision making. In July 2009, The Economist
featured a series of articles titled “What Went Wrong with Economics?” that led
to a debate about the appropriate role of models and modeling. Unlike global land-
use change, the financial markets are regulated, carefully tracked, clearly defined
in monetary values, and supported by extensive accounting and records. Such a
system is far simpler and more disposed to modeling and verification than C and
land use. One key problem leading to the financial crisis was excessive reliance on
models representing complex security derivatives and hedges that were not adequately
understood. In addition, some models were fit to historic data that did not measure
critical phenomena and were based on inappropriate assumptions (e.g., assuming
growth and stability in perpetuity for home mortgages). Finally, the models were not
routinely calibrated to account for stochastic events or nonstationarity in the processes
they represented. A major collateral problem identified was lack of attention to and
analysis of accumulating empirical evidence (e.g., excessive growth in housing stock).
Jean-Luc Demeulemeester and Claude Diebolt (2009) therefore urged decision makers
to “take models for what they are: simplified views of the world that help us think
about a complex issue, but are not true representations of the complexity itself.”
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Experiences in the finance sector offer a cautionary note to policy makers who must
rely on models. As George Box (1979) noted, we must realize that “all models are
wrong; some are useful” (p. 202). The lessons from modeling in the financial sector
underscore the need to have a good understanding of the underlying model and the
data supporting it and to compare model simulations with the empirical evidence to
avoid serious errors. When models are used to estimate C changes associated with
land cover and land use, these caveats merit serious attention.

3.3. Communicating about Models to Decision Makers

Models are quite useful for communication because they are often designed to describe
how elements of a system respond to policy alternatives. Developing a model requires
defining and quantifying key drivers of a system and determining how they interact.
It also calls for selecting a theory on which to base the model and to formalize the
underlying logic.

Models need to be understood not only by those developing and applying them but
also by decision makers and society. Based on his experience in using mathematical
models in courtroom situations, Swartzman (1996) points out:

� The model must make common sense.
� The model must be simple enough for nonscientists to understand.
� Jargon must be avoided.
� The model and its projections must be clearly described; simple illustrative graphics are

most helpful.

These lessons are general enough to be applicable to decisions about land and the
C cycle. However, to capture key processes accurately, modelers must make mod-
els more detailed and complex, whereas decision makers want models to be more
understandable. This situation produces tension in applied modeling.

Model results are often not used in decision making because they are poorly
understood. Many of the challenges related to model use arises from unrealistic
expectations (Van Winkle and Dale 1998). Discrepancies between reality and model
projections arise, in part, from a lack of decision makers’ understanding of the model
assumptions, the scientific process, the uncertainty in the model projections, the
variability in the natural system, the immaturity of theory, and factors that were not
included in the model but that influence the outcome of decisions. Other times, model
results are adopted with too few caveats about their interpretation or validity.

One way to improve decision making supported by models is to increase com-
munication between the decision makers and the modelers and scientific disciplines
that support the analyses related to the policy issue at hand. Ways to enhance com-
munication include workshops, presentations, white papers, and understandable and
accessible documentation. Such steps can create more realistic expectations of the
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contributions of models. Understanding the outcome of a model is not achieved just
by examining the graphical, mapped, or tabular output but also by being aware of the
strengths and limitations of the particular modeling approach, the assumptions, and
the uncertainties in the projections (Dale and Van Winkle 1998). Decision makers
should be briefed on specifics of model documentation (see Table 8.1) and need to
know the quality of the underlying information. However, decisions must frequently
be made in the face of uncertainty. It is in those instances that the modeling process
may be most useful.

Decision makers need to be regularly informed that models based purely on theory
or that combine qualitative and quantitative information cannot provide reliable or
valid quantitative predictions because they never include all influences in a system.
Models can provide estimates and suggest trends regarding the direction of change
and the relative importance of different processes and parameters; however, results
are no more reliable or valid than their underlying data and assumptions. Therefore, it
is important for policies and decisions to have clearly defined goals and a systematic
approach for monitoring progress toward those goals based on empirical data and
analysis that are independent of models.

Integrating models into decision making requires (1) developing flexible
approaches to presenting and applying the results and (2) making the models and
modeling results available and understandable to landowners and resource managers.
For such applications, models may need to be designed up front to meet the specific
needs and skills of the users and to accommodate new data and understanding as they
develop. There are many different models, and most were developed for a specific,
narrow purpose or to test the influence of a single attribute or factor of change among
many others. However, when new needs and questions arise, there is a tendency to
use existing models and other tools that are readily available. It is much easier to
use an existing model than to conduct years of data collection and scientific analysis
or to create a new model designed for the current concern. If existing models are
adopted to address land- and C management concerns, then those models should be
adapted to reflect not only the economic processes involved but also the biophysical
processes, land-use history and trends, local cultural traditions, and socioeconomic
and time constraints of the people occupying and managing the land.

4. Conclusions and Opportunities Ahead

Properly designed and applied, models can support the process of exploration and
refinement of land-management options and improve understanding of underlying
processes. However, it is critical to follow basic procedures for modeling so the
assumptions of models are clear, the models are tested and validated with appropriate
data (when possible), and the range of applicability of the model projections is
made clear. In any case, gaps among claims, expectations, and the roles of models and
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the modeling process need to be pointed out to the user when these tools are used in
policy and management. Furthermore, it is extremely important not to confuse model
projections with scientific results. Models support decision making by helping to
overcome human limits in the ability to assimilate, process, and interpret data without
bias but are never a substitute for the human decision process.

Opportunities exist to improve modeling of land-use change and the C cycle so
that the scientific understanding and information on these issues is presented in a way
that is more useful to decision makers. Specific suggestions include:

� Modeling at the appropriate spatial and temporal scale (while considering changes that
might occur at least one scale up and down)

� Following appropriate modeling procedures (see Table 8.1)
� Focusing on elegance of the approach – that is, including and identifying the necessary

information and processes and avoiding unnecessary detail; encouraging the collection of
data to validate the model and its projections

� Communicating the results, sensitivities, and uncertainties to both scientists and policy
analysts (and recognizing the different ways to do this)

� Developing a new ontology of land classifications based on empirical measurements of C
stocks, fluxes, and capacity for future storage

� Applying the ontology to establish a global reference data set of high geospatial and temporal
resolution (A common reference system is needed to permit improved analysis of changes
associated with land use and to allow comparisons of model results, and current land-cover
and land-use classifications and data sets are inadequate to meet C modeling demands.)

Models are often an integral part of scientific development and management, and
a variety of tools are available for developing, testing, and implementing models.
Because land changes are spatially dynamic, it is useful to use mapping and spatial
analysis to document change. A variety of visualization approaches can be used for
communication, validation, or sometimes extrapolation (e.g., Pontius, Huffaker, and
Denman 2004; Pontius, Versiuis, and Maizia 2006). The steps and components of the
modeling process are straightforward but not always applied. Too often, the use and
value of models do not extend far from the communities of researchers who develop
these models. Therefore, this review suggests a need for the following:

� Understanding that models can be a part of the management process that includes exploration
and refinement of management options

� Involving field researchers and other local stakeholders in the process of developing model
assumptions and input values

� Properly documenting models using standardized procedures
� Adopting interdisciplinary approaches for complex issues such as land-use change
� Framing the question appropriately for the policy needs
� Using models that are appropriate for the question
� Educating decision makers about the scientific process
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Key challenges include (1) the development of spatial and temporal data sets at
resolutions that provide accurate representation of historic changes in C stocks, C
flux, and C storage capacity associated with geospatially explicit land-management
projections; (2) balancing the complexity of dynamic historic changes, uncertain
future climate conditions, global markets, and development with the need for clear
and simple representations of the causes and effects of land-use change; and (3)
providing clarity to decision makers on the differences between best available science
and best available models.
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