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ORNL Has Designed And Operated
Several Research And Demonstration
Reactors

* |In addition to the Oak Ridge Graphite Reactor (first operating
reactor in the world), ORNL has designed many research reactors
and small demonstration reactors

— Army Package Reactor

— Aircraft Reactor Experiment

— Low Intensity Test Reactor (LITR)

— Bulk Shielding Reactor (BSR)

— Oak Ridge Research Reactor (ORR)

— Homogeneous Reactor Experiment (HRE 1 and 2)
— Molten Salt Reactor Experiment (MSRE)

— Experimental Gas-Cooled Reactor (EGCR)
— Tower Shield Reactor (TSR)

— Health Physics Research Reactor (HPRR)
— High Flux Isotope Reactor (HFIR)
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ORNL Has Designed And Operated
Several Research And Demonstration
Reactors (Continued)

* This lecture will emphasize the seven highlighted
reactors.

* Historical significance

— Represent a common type of research reactor found around
the world

— Have unique characteristics that might be challenging to an
IAEA inspector

* In the late 1980s, five of these reactors were in
operation at the same time at ORNL

— ORR, BSR, HPRR, TSR, and HFIR
— Today only one (HFIR) remains in operation

3 Managed by UT-Battelle
for the U.S. Department of Energy



ORNL’s Reactors from Criticality to
Shutdown
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Brief Overview Of The Reactors That

Will Not Be Discussed In Detail

* Army Package Reactor (1953-1957) r

IS
™" 4
S

10 MW(t)-2 MW(e)
PWR using stainless steel cladding
HEU (UO, Powder dispersed in SS plates)

Used standardized components, first reactor with a pressure containment
structure

Built at Fort Belvoir, Virginia by the American Locomotive Co.

Similar Reactors were used at other remote bases including Antarctica and one
was use on floating ships to provide backup power to Panama Canal

ORNL provided technical assistance to B&W in the design of a 69MWt PWR to
propel the N.S. Savannah (300,000 miles without refueling 8 years in operation)

Represents a historical example of a Small Modular Reactor (SMR) concept that is
gaining renewed interest today
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Brief Overview Of The Reactors That
Will Not Be Discussed In Detail
(Continued)

* Aircraft Reactor Experiment (1954)
— 2.5 MW 1000 hour of operation
— Fuel/coolant molten salt (NaF-ZrF,-UF )
— 93% enriched uranium as fuel
— BeO moderated
— Sodium secondary coolant
— Peak temperature 880°C
— 46 cm diameter core
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Brief Overview Of The Reactors That
Will Not Be Discussed In Detail
(Continued)

- GCRE (1957-1966)

— This reactor was to be built as a prototype for a gas-cooled
power reactor

— Joint venture between ORNL and the Tennessee Valley
Authority

— Canceled by the Atomic Energy Commission (AEC).
Terminated in 1966 with fuel in the core but never started.
AEC focused on LWR
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Brief Overview Of The Reactors That
Will Not Be Discussed In Detail
(Continued)

- TSR (1953-2001)

— Spun off of the need to provide better shielding for the Aircraft
Nuclear Propulsion Project

— 1 MW LWR 93 % enriched U/Al fueled spherical reactor in spherical
vessel suspended between twin towers nearly 200 ft (60 m) in the air

— Tested shield designs for candidate materials ranging from the
aircraft reactors, space reactors, tanks, and fast breeder reactors
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Brief Overview Of The Reactors That
Will Not Be Discussed In Detail
(Continued)

- HPRR (1962-1987)

— 93% enriched U/Mo, cylinder 20 cm in diameter and 20 cm
high, bare fast reactor

— Pulse reactor used to study health physics, dosimetry,
biochemical research, and instrumentation development

— Helped scientists estimate solar radiation doses to Apollo
astronauts
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Oak Ridge Graphite Reactor (X-10

Reactor

The reason ORNL was created was as a result of the Chicago Pile (CP-1) which
went critical December 2, 1942

OGR originally designed as a pilot plant for Pu production along with the
separations facility adjacent to the reactor

OGR was designed and constructed in 9 months and went critical Nov. 4, 1943.
— Shutdown Nov. 4 1963

Produced 326 g of Pu in 3 years
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Fig. 7. Operations area of the chemical separations pilot plant. (ORNL History Photo 185)
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which contained slugs of uranium oxide, are also visible
(Courtesy of Argonne Natonal Laboratory)
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Oak Ridge Graphite Reactor (X -10

Reactor)

3.4 MW(t) graphite moderated U(natural) metal fuel

— 44,000 1in. x 4in. (2.54 cm x 10.2 cm) Al clad uranium slugs

Air cooled

channels
Avg.Thermal Flux 5 x 10" n/cm?/s
Fast flux 5 x 10" n/cm?/s
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Fi6. 2.2 0GR FUEL LOADING PATTERN

24 X 24 ft (7.3 m x 7.3 m) graphite containing 1248 fuel

Fig. 4. Graphite Reactor fuel slug.



Oak Ridge Graphite Reactor (X-10
Reactor)

- 3 safety channels located on top of core contained Cd
— Gravity insertion

* 2 shim rods

» 2 regulating rods

» Employed mechanical and pneumatic drives (diverse
and redundant)

* Rods entered from the side of reactor
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Gear Driven Regulating Rods OGR
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Hydraulic Driven Regulating Rods OGR
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Sand Tanks Used to Back Up Hydraulic-
Driven Regulating Rods OGR
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Oak Ridge Graphite Reactor (X-10
Reactor)

* Fresh Fuel was loaded from front face of reactor using
push rods

 Spent Fuel was pushed out back of reactor fell into
containers located in spent fuel canal

* Spent fuel transported by underground canal to
reprocessing plant next door
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OGR (cont.)

Airflow
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Channel scanning device
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Fig. 5. Cutaway view of the Graphite Reactor.
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Oak Ridge Graphite Reactor Refueling
operation
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Oak Ridge Graphite Reactor (X-10
Reactor)

 After the WW Il ended, reactor became a research reactor
 Experiments were conducted in and around the reactor

First medical isotopes produced

Irradiated many isotopes for use world wide
Materials irradiation

Fuel performance

Water Moderation experiments (precursor to PWRs)

Biological effects irradiation measurements- animal irradiations
(dosimetry)

Reactor physics experiments
Radiation detection
Neutron scattering (Clifford Shull won Nobel Prize-1994)
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Oak Ridge Graphite Reactor (X-10
Reactor)

- Safeguard Issues
— Graphite is readily available (nuclear grade is most common)
— Natural U fuel
— Use of industrial materials

— Simple to construct, operate
 Used for research
 Used to produce Pu

— Rapidly constructed
— First production reactors were graphite moderated
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Low Intensity Test Reactor
Building 3005 (Next to OGR)

* 3 MW water-cooled/moderated (downward flow)
* Be reflected

* MTR fuel elements (U/Al) (enriched U)
 Thermal flux 2 x 10" n/cm?/s

» 1948 hydraulic test facility for Materials Test Reactor
(MTR)

* 1950 critical mock-up for MTR

* 1951 500 kW training reactor for MTR operators (low-
intensity training reactor)
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Low Intensity Test Reactor (Continued)

* 1951 converted to experimental reactor
— (Low Intensity Test Reactor)

* 1951 power raised to 1 MW, 1952 power raised to 1.5 MW,
and 3 MW in 1953

 Control
— One regulating rod
— Three shim/safety
— Enter from the top of vessel

* Flexible core loading to allow for in-core experiments (array
of 5 x 9)

* First demonstrated the feasibility of a boiling-water reactor
— Led to development of BORAX reactors at INL and later to BWRs
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PHOTO 86491

South Side of the LITR Building
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Low-Intensity Test Reactor
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LITR Fuel Element
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Vertical Cross Section of the LITR
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Legend for Figure Ho. 5.2.4%

1. Flexible Rubber Line 27. Upper Grid Support
£, oOverpressure Relief Line 28. Shim Rod Guide Bearing
3. Regulating Rod Upper Shock Absorber 29, """ BSection of Tank
4. D Motor for Regulating Rod 30. Ventilation System for Beam Holes and Dry
5. Shim Rod Driwve Motor Stacked Shield (Fig. 9.2.2)
6. ERegulating Rod Drive Shaft 1l. HMortared Concrete Block Shield
7. Top Plug Assembly 32. TFigure 5.3.5
8. Upper Support for Reactor Tank 33. Removable Beryllium Reflector Pieces
9., Primary Water Inlet Opening 4. "' Section of Tanl
10. Shim Rod Driwe Shaft 5. REiver Sand
11. A" Section of Tank 6. Plastic Impregnated with Hﬁﬂ
12. Primary Water E=xit Line 37. Shielding, Steel Plate
13, Exit Water Line Expansion Joint and 38. Permanent Beryllium Reflector
Transition Piece (Fig. 6.7.2) 39. Box for Permanent Reflector
14%. "Spider'" Positioning Mechanism 40, Fuel
(Fig. 5.3.9) 41. Beam-Hole Liner
15. Guide Bearing Grid, "Spidex' 42, Lower Fuel Grid Support
168. Guide Bearing 43. Side Skirt Plate and Fuel Grid Locking
17. Dry Stacked Concrete Block Shield Device (Figs. 5.3.11 and 5,3.12)
18, Precast Concrete Slabs 44, Figure 5.3.7
19, Guide Ring for "Spider'" 45, Lower Guide Grid (Flg. 5.32.14%)
20. Electromagnet 46. "E" Section of Tank
21. Support for Reactor Tank 47 . Lower Guide Grid Cradle (Fig. 5.3.14)
22, Shim Roc Armature 48. Sealed Opening
3. "B" Section of Tank 49, Shim Bod Shock Absorber amd Seat Switch
24. Shim Rod Assembly (Fig. 5.3.8)
25. Locking Device for Upper Grid 50. "F'" sSection of Tank
Assembly (Fig. 5.3.13) 51l. Reactor Tank Drain Valwves
26. Lifting Dewvice for Upper Grid Assembly 532, Lower Support for Reactor Tank
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Bulk Shielding Reactor (BSR)
Building 3010 Next to LITR (1950-1987)

2 MW water-cooled forced circulation
MTR aluminum cladding plate type (square)
HEU fuel
First swimming pool design
Reactor suspended from bridge could be moved within the pool
Experiments could be moved up to reactor face
— D,0 tank could also be used on face of reactor

Designed to do shielding experiments as part of Air Craft Nuclear Propulsion
Program

Critical mockup (pool critical assembly) added to one end of pool, used same
fuel as BSR

Served as model for Geneva reactor

— Assembled in BSR pool, disassembled and set up at first conference for Peaceful
Uses of Atomic Energy, Geneva, Switzerland (1955)

— Maodified to use 20% enriched fuel sold to Swiss government; increased power to
10 MW and operated for many years

Operated remotely from Oak Ridge Research Reactor control room
Cost $250,000
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BSR Reactor Characteristics

* Four control/safety rods contained in specially designed fuel
assembly

 Entered from top of reactor
- Natural circulation at low power levels
* Forced circulation at 2 MW (downward)

— Pumped water from decay tank below core into pool causing pool water to
flow downward through core (1200 gpm)

* Proliferation issues
— Movement of materials adjacent to reactor interface
— D,0 tanks
— Ease of reactor configuration changes and access to reactor core
— In-pile experiment locations
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Restricted Isometric View of the BSR Showing the Flow Path
for Natural-Convection Cooling During Mode-1 Operation
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Geneva Reactor in BSR Pool
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Leo Holland Explaining the Geneva Reactor to President Eisenhower
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BSR Side View
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BSR Top View
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BSR—Moving Experiments
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BSR Fuel Description
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Table 4.1.

for standard BSR fuel elements

Selected reference dimensions

Unit

Nominal
dimension (in.)

Length

Element Assembly

Width (through side plates)
Width (through outside fuel plates)

Plate spacing

Thickness (overall)
Length (overall)

Clad thickness

Core {(alloy) thickness
Core (alloy) lemgth
Width (before bending)

Thickness (overall)
Length (overall)

Clad thickness

Core {alloy) thickness
Core {alloy) length
Width (before bending)

Inside Fuel Plates

Qutside Fuel Plates

34 3/8
2.5996
3.0869
0.117

0.060
24 5/8
0.020
0.020
23 5/8
2.845

0.0690
28 5/8
0.020
0.020
23 5/8
2.845
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Standard BSR Fuel Element
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Helium Cryostat
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Oak Ridge Research Reactor
Building 3042 (Adjacent to BSR)
1957-1987

20 MW tank reactor in swimming pool (21 ft x 10 ft x 28 ft deep)
— 150,000 gallons of water

Enriched uranium, aluminum cladding, plate-type fuel element
— 9x 7 fuel array

— 6 horizontal beams
* Combined features of the MTR and BSR

. Ligh;-water cooled and moderated (12,000 gal/min downward flow through
core

* Be reflected
 Contained in an aluminum tank 5 ft in diameter and 15 ft in height

 Control system operates from bottom of core (no interference with access to
top of reactor)

 Thermal flux of 1.3 x 10" n/lcm?/s

« Employed auto start up (<300 kW)
— Employed movable control elements (top half poison bottom half fuel) (4 elements)
— Disengaged from drive (scram) gravity accelerated into the core
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Versatile Design Allowed A Wide Variety
Of Experiments

- Beam tubes (neutron scattering)

* In-core loops

* Multiple rabbit tubes

* |sotope production

* Fuel testing

 Materials irradiation

* Large access space in pool to one face of reactor
— Thermal column
— lIrradiation of large equipment

* Building (108 ft x 80 ft x 71 ft) lots of space for experiment
around pool

 Over pool hot cell
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In-Core Loops

* HTGR spherical fuel testing
* Flowing helium loop for fuel testing

* Pressurized-water loop for testing in support of first
nuclear commercial nuclear ship—Savannah

* Testing of solution fuel for HRE
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Plan View Of ORR
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Vertical Section Through Core
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End View Of ORR Building
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Primary Cooling
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Top View Of Tank—ORR
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ORR Pool
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ORR Hot Cell At One End Of Pool
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Issues Of Importance To Inspection
Associated With ORR

- Large power

* Very versatile
— Rearrange fuel in almost any configuration
— Closed loops in core
— Changeable fuel

* First reactor to run on LEU silicide fuel (1987)

* Led to conversion of many aluminum-fueled research reactors from
HEU to LEU

* Access to fuel face in pool
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Homogeneous Reactor Experiment
HRE (1952-1954)

» Combined fuel, moderator, and coolant in a single
solution

— HEU uranyl sulfate (uranium dissolved in sulfuric acid)
— On-line reprocessing

— No refueling shutdown

— Excellent load following

« 1 MW(t) [150 kW(e)]
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HRE Design Characteristics

 Spherical 50 liter Tank 347 SS

* D,0 reflected (10-in.-thick reflector tank)

* Fuel density 30 g U/l

* Power density 20 kWII

* Design outlet temperature 250°C at 1000 psia
* Flow rate of 100 gpm fuel

* Flow of 30 gpm of D,0O
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Advantages Of Homogeneous Reactor

The pripcipal advanteges of hoaogeneous eyatems may be »Gnﬂiﬂﬂrﬁﬁ to be
the following:
al

a) WNevtron lossez may b Xap
e

#ines structura; materials can
be largely silminateld It '

(b} Continuous rocezsing ecomes possible with consequently
! v & F
Llowser neutron Loszes to fission produst polsons.

fel Tower imitial and operabting cost, as a result of the simplicisy
of demigr, chemical pandiing, refueling, ani few intricate parts.

{d] A minimum amount of Fusl i reguived for a given power level.

{e) There iz 20 i,g,,igva{_pg distion damage to hard-to-replace
gtructural materisl or ﬂﬁi&?ifﬂ? material, i e.; no "Wigner"
digeqee.

{£1 Tt is poseible to pruﬂFWﬂ power ani RW products simultapscusly
with Pu production with 2 low hold-up of fuel.
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Disadvantages Of Homogeneous
Reactor

{a) The possibllity of suddsn reactivity changes dus to density
fluctuations caused eithar by bubble forwmation or temperature
changes may create difficult comtrol problems.

(b) The fuel solution 1s very corrosive to most materials of con-
strucztion.

{c} There will b= a loss of gome delaysd neutrons in the extermal
circuit which conceivably caun narrow the mergin for safe
control.
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Safety

* Fuel and/or D,0 can be dumped from core to critically
safe dump tank below reactor

* Negative void/density/temperature coefficient

- 19B plates in vapor space above core

- Similar plate in moderator surrounding the core
* Adjustment of reflector fluid

* Adjustment of fuel density

* Disassociation gases (oxygen and hydrogen from water
being exposed to radiation) recombined using a burner
or catalytic converter
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HRE Building (Melton Valley Road
Near HFIR)
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HRE Layout
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HRE Flame Recombiner
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HRE-2 (1957-1961) or HRT

Power level 5 MW(t)
Zircalloy-2 core tank 32-in. diamet¢
10 gm U/l uranyl sulfate
Design temperature 300°C at 2000
D,0 reflected

17 kW/l power density
Flow rate 400 gpm

No active safety control

— Variable solution concentration
— Negative temperature coefficient
— Dump tank for fuel and reflector

Occupied same building as HRE-1
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Core access
Fuel e { ———— Fuel pressurizer
Blanket = Okt
pressunzer
Expansion
joint
Blast shield
Ry ; \ (74 in. 1.D., 304 stainless
e vessel - R ' steel, 1-1/2 in. thick
(32 in. 1.D., Zircaloy-2, )
5/16 in. thick) Cooling col
Diffuser Pressure vesse I

#X ' (60in. 1.D., 347 stainless
steel clad, 4.4 in. thick)

Fig. 14. HRT core and pressure vessels. (ORNL Photo 23459)



CORE VESSIL FOR MOMOGENEDUS
REACTOR TEST. FABRICATED
ENTIRELY OF ZIRCALOY-2
MATERIAL.
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Fig. 15. Schematic flow diagram for the HRT.



Inspection And Proliferation Concerns
(HRE)

* On-line reprocessing

* Hot chemistry lab needed to analyze results of sampling

* Accessibility limited

» Sampling technique clearly different than in
heterogeneous reactors

 Can breed Th/233U or U/23°Puin core or reflector/blanket
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Molten Salt Reactor Experiment
Melton Valley Road Next To HFIR (1964)

- Spin-off of aircraft nuclear propulsion program
* 10 MW(t) single region core

 Graphite moderated

- HEU UF, dissolved in Be F, - Li’F - ZrF, salt

— Be F, low melting point

— Li’F salt good fluid flow properties

— ZrF, protects against UO, precipitation
* 1200°F-1265°F fuel temperature

— Liquidus temperature 840°F
* Density 130 Ib/ft?
- Heat capacity 0.48 Btu/lb-°F

« Thermal conductivity 3.2 Btu/h
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MSRE Design Description

Reac)tor vessel 5-ft diameter by 8-ft high Hastelloy-N (high nickel molybdenum
alloy

Graphite structure with in tank is 55-in. diameter by 67-in. high surrounded by
“core can”

Graphite is assembly of vertical bars 2-in. square by 67-in. long

Fuel flows in 0.4-in. by 1.2-in. channels in grooves inside of graphite bars
(1140 channels) at 850 gpm

Core volume is 90 ft®

— Fuel 20 ft3

— Graphite 70 ft3
Coolant fuel flow pattern

— Inlet salt 1175°F enters top of vessel

— Flows downward in annulus between core can and reactor vessel

— Upward through graphite matrix
Three poison rods 1-in. diameter gadolinium oxide clad in Inconel
Helium cover gas
Dump valve into two critically safe drain tanks under reactor vessel
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MSRE Fuel Reprocessing

* Uranium removed by treating with fluorine gas resulting
in creation of UF, volatilization

» Usually done in batch process adjacent to reactor
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MSRE Building
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Molten Salt Reactor Experiment Vessel

74 Managed by UT-Battelle
for the U.S. Department of Energy



MSRE Reactor Vessel
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Reactor Vessel
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MSRE Top View
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MSRE Flow Diagram
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MSRE Flow Diagram

77 Managed by UT-Battelle
for the U.S. Department of Energy



MSRE Fuel Pump (Centrifugal Sump
Type) 1160 rpm
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MSRE Heat Exchanger Tube Shell
163 Tube 0.5-in. OD, 16-in. Diameter,
And 8-ft Long

HELASEFIED
ORHL-LR-HG ST0LERE

FUEL INLET

1#2-in-00 TUBES

CROSS BAFFLES
THERMAL-BARRIER PLATE

TUBE SHEET
COOLANT INLET

16 4-in. 00 u O.2-in. WALL = 8-Tt LONG

Fig. 26. MSRE air-cooled radiator with its door open.

COOLANT OUTLET

SO0 T-STREAM

uu’lﬂms BAFFLE
FUEL QUTLET

Primary Heat Exchanger
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MSRE Drain Tank
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MSRE Core/Can
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Fig. 23. Graphite core of the MSRE.
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MSRE Pumps

[
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Molten Salt Is Transparent

L]
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Inspection and Proliferation Issues
Associated With MSR

High temperatures make access to reactor and processing loop difficult
even during shutdown

— Special equipment required for monitoring
Fluid fuel allows variation in concentration, isotopes and fuels

— MSRE converted from a 2°U core to Th/%3U core without design changes
in system
Inventory of materials would require hot (thermal and radioactive)
chemistry sampling
Processing (extraction of fuel) uses chemical processes and occurs at

temperatures not found in aqueous reprocessing or electroprocessing
(LMR metal fuel)

Ease in removing fuel from salt with online reprocessing

On-line or batch processing means no fuel necessarily is transported to
or from the site or stored on site. Makes visual observation difficult

Ability to breed both Th/233U and U/2°Pu using molten blankets around
the core
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High Flux Isotope Reactor

85 MWt [100 MW(t) original design] flux trap reactor
» Critical in 1965, currently operating

* 93% enriched Cermet fuel ( U;04-Al) plates Al cladding
(9.3Kg U2%)
« Water cooled, water moderated, Be reflected

* Pressurized light water reactor design with pressure
vessel sitting in bottom of a pool

?. :
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High Flux Isotope Reactor

= '\ Inner and Outer Element
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High Flux Isotope Reactor

* Control and Safety System

— 4 Independent quarter cylindrical sections with Eu,0, as the
poison

— 1 cylinder containing Eu,0, for control
— Safety plates drop in from top of core
— Control cylinder enters from the bottom

mmE THIS AREA DOES NOT ABSORB ANY THERMAL NEUTRONS
THIS AREA ABSORBS SOME THERMAL NEUTRONS
THIS AREA ABSORBS ALL THERMAL NEUTRONS

SHUTDOWN COLD CLEAN 1 DAY LATER MID CYCLE END OF CYCLE
CRITICAL EQUILIBRIUM Xo
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OFNL-OWO G5M- 10453

GontrolElateand Cylinder
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ORNL-DWG 95M-10451
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High Flux Isotope Reactor Cooling System
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HFIR Experimental Capabilities

Trans-plutonium isotope production
Medical isotope production
 Materials Irradiation

Neutron Activation Analysis B oeror
Neutron Scattering s e

s Hydradlicyacilityz Medical isotope
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Safeguards Issues Related to High
Flux Reactors

* Most use highly enriched U

* Frequently refueled (1 month to 6 months) because of
high burnup

* Reflectors may be decoupled from core neutronics

— Excess neutrons in the reflector implies that except for strong
absorbers, materials in the reflector do not affect the core
neutronics or fuel cycle

— Implies that the inspectors need to be aware as to how
materials used in experiments are tracked.
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ORNL Has Long And Colorful History
Of Examining A Variety Of Reactor

Designs

 Reactors had different coolants (water, gas, fuel solution, molten salt)

A variety of fuels—aluminum-based, homogeneous, molten salt solutions,
uranium slugs

— HEU

— LEU

— Natural uranium

— Plutonium

_ 233U and 235U

— Thorium

Wide range of power 1 MW-100 MW

Variety of shapes—swimming pools, pressure vessels, hanging spheres,
graphite matrixes, tanks, bare/pulsed

Experiments—isotopes, actinide production, materials irradiation effects,
fuels, neutron scattering, neutron activation, shielding, reactor physics

— Some leading to Nobel Prize

— Others leading to large-scale use of nuclear energy, medical treatment and
dialgnostics, safer reactors, better instrumentation, new and better materials
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